Технология SLI позволяет использовать вычислительный потенциал двух видеокарт только в том случае, если они полностью одинаковые. CrossFire в этом свете выгодно отличается от технологии компании NVIDIA: в паре можно использовать видеокарты разных модификаций, главное, чтобы они были из одной серии. (журнал Железо)
ATI постоянно оптимизирует и обновляет свои драйверы. Программа для работы с драйверами Catalyst.
VIVO означает Video-In (видеовход) и Video-out (видеовыход).
Маркировка
Компания Nvidia решила в новом году изменить маркировку видеокарт. Прежде всего будет изменена маркировка видеокарт девятой серии - новые видеокарты будут обозначаться как G1хх. Серия G1хх будет закреплена за бюджетными и среднеклассовыми видеокартами и картами среднего класса. Nvidia G130 придет на замену видеокартам 9600 GSO и 8800 GS, которые уже сняты с производства, а видеокарты Nvidia G100 и G120 будут выпущены взамен производящимся в настоящее время моделям 9400 GT и 9500 GT соответственно. Кроме того, Nvidia планирует выпустить в этом году новые видеокарты верхней ценовой категории, которые будут маркироваться как GTX2xx.
В обозначениях модели видеоплаты следует обращать внимание на буквенные сокращения в конце: урезанные варианты на базе графического чипа ATI обозначаются буквами СЕ или XL, а у NVIDIA - LE или ХТ; такие системы имеют уменьшенную тактовую частоту видеопроцессора. Сокращение ТС (Turbo Cache) у NVIDIA или НМ (Hyper Memory) у ATI обозначает еще более медленное решение, которое использует оперативную память компьютера. Весь перечень видеоплат с дополнительными обозначениями типа GS, GTO, ХТХ или PRO не помнит ни один специалист. (журнал Chip)
Что нужно знать о видеокартах?
Видеокарта обычно представляет собой дополнительную плату, которая вставляется в слот материнской платы вашего ПК. Самые дешёвые графические решения, от которых требуется только 2D или работа под Windows, часто интегрированы в чипсет материнской платы. Современные видеокарты могут похвастаться впечатляющим списком возможностей и спецификаций, которые год от года всё увеличиваются.
Выходы
После установки видеокарты в ваш ПК на задней панели корпуса можно будет обнаружить соответствующие разъёмы. Именно к ним и подключается дисплей. Многие видеокарты дают несколько (два) выходов, поэтому одновременно можно пользоваться несколькими дисплеями. Существуют разные интерфейсы дисплеев, но, в целом, их подразделяют на цифровые и аналоговые.
Именно здесь располагаются выходы видеокарты. Обратите внимание, что слотовая панель практически каждой карты расширения доступна снаружи корпуса ПК. Поэтому на ней и располагаются все нужные входы и выходы.
Компьютер - это цифровая машина, поэтому цифровой формат для компьютера является "родным", его лучше использовать и для подключения монитора к видеокарте. Современные дисплеи прошли долгий путь развития от первых электронно-лучевых трубок (ЭЛТ) до жидкокристаллических дисплеев (ЖК). ЭЛТ-мониторы по своей природе аналоговые, поэтому для них цифровой сигнал превращается в аналоговый с помощью цифро-аналогового преобразователя (ЦАП), который размещён на видеокарте. С появлением жидкокристаллических дисплеев потребность в ЦАП исчезла, но этот компонент всё равно присутствует на случай подключения аналоговых ЭЛТ-мониторов.
Разъём, предназначенный для вывода аналогового сигнала, называют VGA или D-Sub 15. причём качество такого сигнала может отличаться от одной видеокарты к другой. Дорогие видеокарты используют качественные компоненты, поэтому дают ясную и чёткую картинку даже на высоких разрешениях.
Интерфейс VGA был стандартом до появления цифрового интерфейса DVI (Digital Visual Interface), но он популярен и до сих пор. Выходы D-Sub VGA по-прежнему используются для подключения большинства ЭЛТ-мониторов. Их также можно встретить на большинстве цифровых проекторов и даже на HDTV-телевизорах. Впрочем, для цифровых мониторов мы всё же рекомендуем использовать цифровые интерфейсы.
Если ваша видеокарта не старше 2004 года, то, скорее всего, у неё есть DVI-выход. Большинство видеокарт с DVI-выходами поставляются вместе с переходниками, преобразующими сигнал с DVI на VGA/D-Sub. Так что владельцам аналоговых ЭЛТ-мониторов расстраиваться не стоит. Все современные видеокарты дают два DVI-выхода, которые позволяют подключить два дисплея и расширить возможности рабочего стола Windows. Впрочем, два дисплея поддерживает любая комбинация выводов DVI и D-Sub/VGA. Для новых дисплеев с большой диагональю и разрешением, например, для 30" ЖК-панелей Dell и Apple, требуется выход с двухканальным DVI (Dual-Link), который поддерживает "родное" разрешение 2560x1600.
Традиционный видео-выход, повсеместно встречающийся у телевизоров и других видеоустройств, например, видеомагнитофонов. Видеосигнал проходит через единственный коаксиальный кабель. В результате мы получаем аналоговый сигнал низкого разрешения, который обычно хорош только для презентаций или игр. Вряд ли стоит читать с подключённого через "тюльпан" телевизора, поскольку качество очень низкое. Впрочем, "тюльпан" подходит для видео стандартного разрешения.
Традиционный видео-выход, повсеместно встречающийся у телевизоров и других видеоустройств, например, видеомагнитофонов. Видеосигнал проходит через единственный коаксиальный кабель. В результате мы получаем аналоговый сигнал низкого разрешения, который обычно хорош только для презентаций или игр. Вряд ли стоит читать с подключённого через "тюльпан" телевизора, поскольку качество очень низкое. Впрочем, "тюльпан" подходит для видео стандартного разрешения.
S-Video (S-Video обозначает "Super Video" или "Super VHS") - ещё один аналоговый интерфейс видео, распространённый в телевизионной индустрии. На телевизор он даёт такой же сигнал низкого разрешения, как и "тюльпан", но цветовая информация разнесена по трём каналам, соответствующим базовым цветам. В итоге мы получаем более качественный сигнал, чем композитный по одному кабелю, но по-прежнему низкое динамическое разрешение. Хотя S-Video превосходит по качеству "тюльпан", стандарт сильно уступает компонентному выходу (Y, Pb, Pr).
Компонентные выходы слишком велики, чтобы располагать их на видеокарте, поэтому практически всегда используется переходник. Обычно переходник даёт компонентное видео (первые три разъёма) и звук (последние два разъёма). Данный стандарт предусматривает три раздельных разъёма типа "тюльпан": "Y", "Pb" и "Pr". Они обеспечивают раздельную цветовую информацию для HDTV (телевидение высокого разрешения). Подобный тип соединения также присутствует на многих цифровых проекторах. Хотя сигнал передаётся в аналоговой форме, его качество вполне можно сравнить с интерфейсом высокого разрешения VGA. Через компонентный интерфейс можно передавать видео высокого разрешения (HD).
HDMI расшифровывается как "High Definition Multimedia Interface". HDMI - стандарт будущего. Это единственный интерфейс, который обеспечивает передачу видео- и аудио-информации по одному кабелю. HDMI был разработан для телевидения и кино, но и компьютерные пользователи смогут полагаться на HDMI для просмотра видео высокого разрешения.
Выходы HDMI на видеокартах встречаются очень редко, но в будущем они должны стать более популярными. Просмотр видео высокого разрешения через компьютер может потребовать как видеокарты с выходом HDMI, так и монитора с поддержкой HDMI.
Интерфейсы видеокарт
Своей интерфейсной частью видеокарта вставляется в материнскую плату вашего компьютера. По сути, это слот, с помощью которого компьютер и видеокарта обмениваются информацией. Так как на материнской плате обычно присутствует слот какого-либо одного типа, то важно покупать видеокарту, которая будет ему соответствовать. Например, видеокарта PCI Express не будет работать в слоте AGP.
Интерфейс PCI является современным стандартом для большинства карт расширения, но видеокарты в своё время отошли от интерфейса PCI на стандарт AGP (а позже и на PCI Express). Некоторые компьютеры не имеют слотов AGP или PCI Express для модернизации графической подсистемы. Единственной возможностью для них остаётся интерфейс PCI, но видеокарты для него встречаются редко, стоят дорого, да и их производительность оставляет желать лучшего.
PCI-X расшифровывается как "Peripheral Component Interconnect - Extended", то есть перед нами 64-битная шина с пропускной способностью до 4266 Мбайт/с в зависимости от частоты. PCI-X (не путать с PCI Express!) - это первая скоростная модернизация шины PCI Express, но при этом она получила ряд функций, полезных в серверном пространстве. Шина PCI-X не слишком часто встречается в обычных ПК, а видеокарты PCI-X очень редки. Можно установить карту PCI-X в обычный слот PCI, если он поддерживает последнюю версию стандарта (PCI 2.2 или выше), но со стандартом PCI Express PCI-X не совместим.
AGP - интерфейс с высокой пропускной способностью, специально предназначенный для видеокарт. Он базируется на спецификации PCI версии 2.1. Интерфейс AGP прошёл через несколько версий, а последней стала AGP 8x со скоростью 2,1 Гбайт/с, которая в восемь раз быстрее начального стандарта AGP со скоростью 266 Мбайт/с (32 бита, 66 МГц). AGP на новых материнских платах уступает место интерфейсу PCI Express, но AGP 8x (и даже AGP 4x) всё же дают достаточную пропускную способность для современных видеокарт. Все карты AGP 8x могут работать как в слотах AGP 4x, так и AGP 8x.
В отличие от ISA, PCI и AGP, стандарт PCI Express является последовательным, а не параллельным. Поэтому число контактов существенно уменьшилось. В отличие от параллельных шин, нужная пропускная способность доступна для каждого устройства. В то время как, например, для PCI пропускная способность разделяется между использующимися картами.
PCI Express позволяет сочетать несколько одиночных линий для увеличения пропускной способности. Слоты PCI Express x1 короткие и маленькие, при этом они дают суммарную скорость 250 Мбайт/с в обоих направлениях (на устройство и от него). PCI Express x16 (16 линий) даёт пропускную способность 4 Гбайт/с в одном направлении или 8 Гбайт/с в сумме. Меньшие варианты слотов PCI Express (x8, x4, x1) для графики не используются. Следует отметить, что механически слот может соответствовать x16 линиям, но логически к нему может быть подведено их меньшее количество. Существует много материнских плат, у которых два слота PCI Express x16 могут работать в режиме x8, что позволяет установить две видеокарты (SLI или CrossFire).
Охлаждение
Видеокарты могут потреблять (и, соответственно, выделять) столько же энергии, сколько 150-Вт лампочка. Подобное количество тепла, выделяемое с поверхности одного кремниевого чипа, может легко сжечь кристалл. Поэтому тепло следует своевременно отводить с помощью стабильных и мощных кулеров. Без систем охлаждения графический процессор или память могут перегреться, что приведёт к "повисанию" компьютера, а в худшем случае даже к выходу видеокарты из строя.
Охлаждение может осуществляться как пассивно с помощью теплопроводящих материалов и радиаторов, так и активно, если работает вентилятор. Но в последнем случае придётся довольствоваться повышенным уровнем шума.
Радиаторы
Под словом "радиатор" (heatsink) обычно понимают пассивное охлаждение. Радиатор понижает температуру чипа, к которому он подключён, благодаря отводу тепла и повышению площади теплообмена с воздухом. Для этой цели радиаторы обычно используют рёбра. Их можно найти на графических процессорах, а также на чипах памяти.
Тепловые трубки
Видеокарты с пассивным охлаждением часто используют тепловые трубки. Чем больше поверхность радиатора, тем лучше будет отвод тепла (часто с помощью вентилятора). Но иногда непосредственно на самом чипе сложно установить большой радиатор из-за ограниченного свободного места. Некоторые чипы настолько компактны, что громоздкий вентилятор не будет правильно работать из-за слишком малой контактной площади. В таких случаях помогают тепловые трубки, поскольку они значительно увеличивают теплопередачу от нагреваемого участка к радиатору. К чипу прикладывается пластина из материала с высокой теплопроводностью. А уже к ней прикрепляется тепловая трубка, которая отводит тепло к радиатору на другом своём конце. И там уже тепло легко можно рассеять.
Кулеры
В большинстве случаев кулер видеокарты представляет собой радиатор с прикреплённым вентилятором, который продувает воздух вдоль поверхности радиатора, таким образом отводя тепло. Кулеры видеокарт чаще всего охлаждают графический процессор, поскольку это самый горячий компонент видеокарты. Сегодня на рынке можно найти немало кулеров для видеокарт, которые можно установить вместо штатных вариантов. Часто кулеры видеокарты называют VGA-кулеры. Но VGA-кулеры зачастую охлаждают не только графический процессор, но и чипы видеопамяти.
Графический процессор
Графический процессор можно назвать "сердцем" видеокарты, почти так, как центральный процессор является "мозгом" компьютера и является самой важной частью видеокарты. В большинстве случаев графический процессор скрыт от постороннего взгляда кулером видеокарты. Следует отметить, что графический процессор чаще всего является самым большим и горячим компонентом видеокарты.
Видеопамять
Видеопамять на карте обычно располагается рядом с графическим процессором. Если графический процессор можно назвать "сердцем" видеокарты, то память - это источник жизненной силы.
Чипы памяти (обычно их бывает от двух до восьми) чаще всего располагаются на видеокарте вокруг или по одну сторону от графического процессора. Они выглядят как маленькие чёрные прямоугольники или квадраты равного размера.
Во многих случаях на чипы памяти радиаторы не устанавливаются, поэтому их легко можно заметить на видеокарте. Но иногда к чипам памяти прикрепляется радиатор, либо они закрываются общим с GPU кулером, охлаждающим как графический процессор, так и память.
Современные видеокарты, как правило, оснащаются 128, 256 или 512 Мбайт памяти, причём используется как память DDR2, так и GDDR3. Чем больше будет памяти на видеокарте, тем больше графических данных (как правило, текстур), можно сохранять локально, то есть за ними не нужно будет обращаться в память компьютера.
Впрочем, объём - это далеко не всё. Часто дешёвые или массовые видеокарты оснащают большим количеством памяти, чтобы они быстрее продавались. Если современные модели видеокарт используют шину памяти 128 или 256 бит шириной, то некоторые дешёвые и даже средние по цене карты оснащены всего лишь 64-битной шиной. Представьте себе две видеокарты с равными частотами, одна из которых использует 128-битную шину, а вторая - 64-битную. Первая будет передавать за единицу времени в два раза больше данных, чем карта с 64-битной шиной. Современные игры требуют, чтобы рабочие данные хранились в видеопамяти. И если они не будут своевременно поступать к графическому процессору (в случае узкой шины), то он будет простаивать, а игра - ощутимо "тормозить".
Если вам придётся выбирать между двумя видеокартами, которые различаются тактовыми частотами, объёмом памяти и шириной шины, то всегда выбирайте меньший объём с более широкой шиной. Конечно, если вы получите при этом быструю память и/или скоростной графический процессор. Это того стоит.